Программируем без компьютера: Введение в основы алгоритмики и робототехники с использованием образовательных роботов (Bee-Bot, Cubetto)

Тема 6. Лекция

Введение

Сегодня мы поговорим о теме, которая у многих ассоциируется со сложными кодами и экранами мониторов — о программировании. Но я хочу сразу вас успокоить: мы не будем писать код. Мы будем играть, творить и учить детей думать. Тема нашей встречи — «Программируем без компьютера».

Мы живем в мире, где умение логически мыслить, планировать свои действия и находить ошибки становится важнее, чем простое запоминание фактов. И основы этого мышления, которое называют алгоритмическим, можно и нужно закладывать уже в дошкольном возрасте. Сегодня мы разберемся, что такое «алгоритм» на самом деле, зачем он нужен нашим воспитанникам, и познакомимся с двумя замечательными помощниками в этом деле — роботами-пчелкой Вее-Воt и деревянным роботом Cubetto.

Что такое алгоритм?

Понятие алгоритма: Это просто, как рецепт пирога!

Забудьте о сложных терминах. **Алгоритм** — это просто пошаговая инструкция, последовательность действий для достижения какой-то цели. Мы с вами сталкиваемся с алгоритмами каждый день:

Рецепт борща — это алгоритм. Если перепутать шаги (сначала посолить воду, а потом положить мясо), результат будет другим.

Инструкция по сборке мебели — это алгоритм.

Наш утренний ритуал (проснуться \to умыться \to одеться \to позавтракать) — это тоже алгоритм.

Программа — это алгоритм, записанный на языке, понятном исполнителю. Для компьютера — это код, а для наших роботов — это последовательность нажатых кнопок или выложенных блоков.

Ключевые свойства алгоритма (объясняем на пальцах)

Дискретность (Пошаговость): Алгоритм состоит из отдельных, простых шагов. («Сначала сделай шаг вперед, ПОТОМ поверни направо»).

Детерминированность (Определенность): При одних и тех же исходных данных результат всегда будет одинаковым. (Если мы нажмем «впередветельных распередветельного предветельного предвете

Понятность: Все команды в алгоритме должны быть понятны исполнителю. (Робот-пчелка не поймет команду «лети», она понимает только «шаг вперед»).

Результативность (Конечность): Алгоритм всегда должен заканчиваться и приводить к какому-то результату. (Пчелка должна дойти до цветка, а не ездить бесконечно).

Зачем учить алгоритмике дошкольников?

Мы не растим программистов с пеленок. Мы развиваем универсальные навыки (soft skills), которые пригодятся в любой сфере жизни:

Планирование: Прежде чем нажать кнопки, ребенок должен мысленно (или пальчиком на поле) проложить маршрут.

Логическое мышление: Ребенок учится выстраивать причинно-следственные связи.

Пространственное ориентирование: Понятия «вперед», «назад», «влево», «вправо» усваиваются не в теории, а на практике.

Навык «отладки» (поиска ошибок): Если пчелка уехала не туда — это не трагедия, а задача! «Где мы ошиблись? Какую команду нужно исправить?». Это учит анализировать свои действия и не бояться ошибок.

Коммуникация и работа в команде: Дети учатся договариваться, какой маршрут выбрать, и вместе составляют программу.

Знакомство с роботами: наши исполнители Bee-Bot («Умная Пчелка»)

Bee-Bot («Умная Пчелка»)

Внешний вид и философия: Яркая, дружелюбная пчелка. Идеальна для первого знакомства. Ее девиз: «Сначала думай, потом программируй». Программа вводится в память робота, а потом он ее выполняет.

Интерфейс (кнопки на спинке):

- ▶ \uparrow (Вперед): Двигаться вперед на один шаг (стандартный шаг 15 см).
- ▶ ↓ (Назад): Двигаться назад на один шаг (15 см).
- ▶ ← (Поворот влево): Повернуться на месте влево на 90 градусов.
- ightharpoonup (Поворот вправо): Повернуться на месте вправо на 90 градусов.
- ▶ | | (Пауза): Сделать остановку на 1 секунду.
- **GO** (Зеленая): Запустить выполнение программы.
- **Х (Синяя, Сброс):** Очистить память пчелки от предыдущей программы. **Это самая важная кнопка!** Всегда нажимаем ее перед составлением нового алгоритма.

Знакомство с роботами: наши исполнители Bee-Bot («Умная Пчелка»)

Принцип работы:

- ▶ Ставим пчелку на стартовую клетку.
- ▶ Нажимаем «Х», чтобы очистить память.
- ▶ Продумываем маршрут и последовательно нажимаем кнопки команд (например, \uparrow , \uparrow , \rightarrow , \uparrow).
- Нажимаем «GO».
- ▶ Наблюдаем, как пчелка выполняет программу. Если она ошиблась ищем ошибку и начинаем заново.

Знакомство с роботами: наши исполнители Cubetto (Кубетто)

Внешний вид и философия: Тактильный, деревянный робот без экрана и кнопок. Состоит из двух частей: робота **Cubetto** и **Панели управления**. Его девиз: «Программирование, к которому можно прикоснуться».

Интерфейс (Панель и блоки):

Панель управления: Деревянная доска с углублениями, куда вставляются блоки.

Блоки команд (разного цвета):

- ▶ Зеленый: Шаг вперед.
- ▶ Красный: Поворот вправо на 90 градусов.
- ▶ Желтый: Поворот влево на 90 градусов.

Линия «Функция» (отдельная область на панели):

► Синий блок (Функция): Вставив его в основную программу, мы говорим роботу: «А теперь выполни то, что лежит в синей рамочке». Это простейшее введение в понятие подпрограммы. Например, если танец — это «вперед-поворот-вперед-поворот», мы можем выложить эту комбинацию в линию функции и вызывать ее одним синим блоком.

Знакомство с роботами: наши исполнители Cubetto (Кубетто)

Принцип работы

Ставим Cubetto на старт.

- Продумываем маршрут.
- Физически выкладываем цветные блоки на панель управления. Ребенок видит всю программу целиком.
- ▶ Нажимаем большую синюю кнопку «Старт» на панели.
- ▶ Наблюдаем. Если ошибка меняем блоки местами, убираем лишние или добавляем нужные

Роль педагога: от наблюдателя к навигатору

Создание игровых полей и проблемных ситуаций.

Стандартные коврики — это хорошо, но творчество — лучше!

DIY-поля: Рисуем на большом листе ватмана город с домами, зоопарк, сказочный лес. Разметка поля — клетки 15х15 см для Bee-Bot или 20х20 для Cubetto.

Проблемные ситуации (сюжет): Не просто «доведи пчелку из точки А в точку Б».

- «Пчелке нужно собрать нектар со всех красных цветов, не наступая на синие лужи».
- «Cubetto— это пожарная машина. Нужно доехать до горящего дома самым коротким путем!»
- «Давайте составим для пчелки программу танца: два шага вперед, поворот, два шага назад, поворот».

Какие вопросы педагог может задать ребенку?

Правильный вопрос важнее правильного ответа. Мы используем вопросы, чтобы направлять мышление ребенка:

На этапе планирования:

- «Куда пчелке нужно поехать в первую очередь?»
- «Сколько шагов нужно сделать до поворота? Давай посчитаем вместе».
- ▶ «В какую сторону нужно будет повернуться в сторону окна или в сторону двери?» (Привязка к реальным ориентирам).

На этапе выполнения:

• «Давай проверим, правильно ли едет пчелка? Считай ее шаги».

На этапе "отладки" (если ошибка):

- ▶ «Ой, пчелка уехала не туда. На каком шаге она ошиблась?»
- «Какую команду мы дали ей неправильно? Поворот или шаг вперед?»
- «Как ты думаешь, что нужно изменить в нашей программе?»

Заключение

Коллеги, сегодня мы увидели, что алгоритмика — это не страшно, а увлекательно. Роботы Bee-Bot и Cubetto — это не просто дорогие игрушки. Это уникальные инструменты, которые позволяют сделать абстрактные понятия, такие как «план», «команда», «последовательность», видимыми, осязаемыми и понятными для ребенка.

Наша главная цель — не в том, чтобы ребенок безошибочно составлял программы, а в том, чтобы он научился думать, пробовать, ошибаться и исправлять свои ошибки с улыбкой. Мы учим его не кодированию, а образу мышления, который станет фундаментом его будущих успехов.