
Создание развивающей предметнопространственной среды для технического творчества: STEAMлаборатория, центр конструирования

Лекция 3

ФГОС ДО как основа: среда, ориентированная на ребенка

Развивающая предметно-пространственная среда (РППС) - это не просто набор игрушек, а **целостная система**, обеспечивающая условия для всестороннего развития ребенка.

РППС должна быть содержательной, трансформируемой, полифункциональной, вариативной, доступной и безопасной.

Акцент на **инициативность, самостоятельность и творчество** ребенка, что напрямую связано с принципами STEAM.

Инженерное мышление как ключевая компетенция XXI века

Что такое инженерное мышление в дошкольном возрасте? Способность видеть проблемы, генерировать идеи, планировать, создавать, тестировать и улучшать, работать с материалами и инструментами, понимать причинноследственные связи, мыслить системно.

STEAM-подход как драйвер развития: Целенаправленное внедрение элементов STEAM в РППС для формирования предпосылок инженерного мышления.

Трансформируемость и вариативность РППС для «инженеров»-дошкольников

Практика: Наличие разнообразных конструкторов (классические, магнитные, строительные наборы, природные материалы, бросовый материал), инструментов (безопасные молотки, отвертки, плоскогубцы, измерительные инструменты - линейки, рулетки), механизмов (шестеренки, рычаги, колеса, блоки).

Акцент на инженерию: Создание "инженерных зон" или "мастерских", где дети могут свободно экспериментировать с материалами, строить, изобретать. Модульные конструкции, позволяющие менять конфигурацию пространства.

Полифункциональность среды: от идеи до воплощения

Практика: Материалы, которые могут быть использованы для разных целей. Например, строительные блоки - для создания зданий, а также для изучения геометрии, баланса, свойств материалов.

Акцент на инженерию: Возможность использовать материалы и инструменты для создания действующих моделей (простые механизмы, рычаги для подъема груза, системы желобов для воды).

Содержательность и доступность: стимулирование познавательной активности

Практика: Наличие иллюстративных материалов (схемы, инструкции, образцы), наглядных пособий, демонстрирующих принципы работы механизмов, простые физические явления. Материалы должны быть доступны детям разного возраста и уровня развития.

Акцент на инженерию: "Лаборатории" для экспериментов с физическими свойствами материалов (прочность, упругость, проводимость), простые робототехнические наборы, элементы для исследования механики (маятники, блоки).

Среда как "умный" партнер: ФГОС ДО и STEAM на практике

Связь с ФГОС ДО: РППС должна стимулировать самостоятельность, инициативность, креативность, познавательную активность.

Акцент на инженерию: Среда, которая "провоцирует" инженерные решения. Например, создание набора "испытай свою конструкцию" (разные препятствия, грузы), материалов для строительства "самого высокого/устойчивого/быстрого" объекта. Уголки для моделирования и прототипирования.

Роль педагога: от наблюдателя к фасилитатору инженерных идей

Практика: Педагог не просто предоставляет материалы, но и стимулирует постановку инженерных задач, помогает сформулировать гипотезы, поддерживает процесс проб и ошибок, организует рефлексию ("Почему сломалось? Как починить? Что можно улучшить?").

Акцент на инженерию: Педагог выступает как "старший инженер", который направляет, задает вопросы, показывает пример, но не дает готовых решений. Создание ситуаций "инженерного вызова"

Оценка прогресса: не только результат, но и процесс

Практика: Фиксация не только готовых построек, но и **процесса их создания**, детских идей, экспериментов, неудач. Ведение "инженерных дневников" (рисование, записи).

Акцент на инженерию: Оценка того, как ребенок ставит задачи, пробует разные подходы, анализирует ошибки, улучшает свою конструкцию.

Реализация STEAM-подхода через РППС: от теории к ежедневной практике

Переход от разовых занятий к интеграции: STEAM-элементы должны быть естественной частью повседневной жизни ДОУ, пронизывая все образовательные области.

Акцент на инженерию: Систематическое включение задач, связанных с конструированием, моделированием, решением практических инженерных проблем, использование инструментов и материалов для создания функциональных объектов.

Концепция «Среда - как третий педагог»

Ключевая идея:

Ключевая идея концепции "Среда как третий педагог" заключается в том, что окружающее ребенка пространство является не пассивным фоном, а активным, динамичным участником образовательного процесса, способным самостоятельно влиять на развитие личности, стимулировать познавательную активность, самостоятельность, творчество и социальные навыки. В этом контексте среда выступает как равноправный партнер взрослого (воспитателя и родителей) в воспитании и обучении ребенка.

Авторство:

Идеи, близкие к концепции "среда как третий педагог", активно развивались и внедрялись в педагогическую практику, в частности, в Италии, в Реджио-Эмилии (Reggio Emilia). Педагоги этого региона, такие как Лоррис Малагуцци (Loris Malaguzzi), внесли огромный вклад в развитие этой философии. Они рассматривали среду как "третьего учителя", который обладает своим языком, своим потенциалом и своими возможностями для обучения.

Концепция «Среда как «третий педагог»»

Принципы, лежащие в основе концепции:

- Ребенок как активный субъект: Ребенок воспринимается как исследователь, творец, полноценный участник образовательного процесса, который активно взаимодействует со средой и сам строит свое знание.
- Среда как источник стимулов: Пространство должно быть насыщено разнообразными материалами, инструментами, объектами, которые побуждают к исследованию, экспериментированию, творчеству и решению задач.
- Полифункциональность: Материалы и объекты в среде должны иметь возможность использоваться разнообразно, не имея единственного, жестко заданного назначения. Это способствует развитию гибкости мышления и креативности.
- **Трансформируемость:** Среда должна быть гибкой и легко адаптируемой под меняющиеся потребности детей, их интересы и реализуемые проекты. Дети сами могут участвовать в трансформации пространства.
- Доступность и безопасность: Все материалы и зоны должны быть доступны для детей, а среда в целом безопасна для свободного исследования и самостоятельных действий.
- Эстетичность: Важное значение имеет красота и гармония пространства. Эстетически привлекательная среда способствует развитию чувства прекрасного, создает позитивный эмоциональный фон.
- **Рефлексивность:** Среда должна способствовать рефлексии как ребенка над своими действиями, так и педагога над организацией пространства.
- **Связь с культурой и сообществом:** Среда может включать элементы, отражающие культуру, традиции, а также материалы, которые способствуют связи с внешним миром.

Концепция «Среда как «третий педагог»»

Возможности практического применения:

Организация пространства ДОУ:

- **Зонирование:** Создание различных функциональных зон (зоны для экспериментирования, конструирования, художественного творчества, чтения, уединения, сюжетно-ролевых игр).
- **Наполнение:** Использование разнообразных, часто нетрадиционных материалов (природные материалы, бросовый материал, различные конструкторы, инструменты, научное оборудование).
- **Трансформация:** Предоставление детям возможности самим изменять пространство, переставлять мебель, добавлять или убирать материалы в зависимости от текущих проектов и игр.
- **Эстетическое оформление:** Внимание к деталям, цветам, текстурам, создание уютных и вдохновляющих уголков.

Планирование образовательной деятельности:

- **Проектная деятельность:** Среда становится "лабораторией" для реализации детских проектов, где дети сами ищут материалы, конструируют, экспериментируют.
- **Сюжетно-ролевые игры:** Предоставление пространства и материалов для развертывания разнообразных игровых сюжетов.
- Исследовательская деятельность: Оборудование уголков для экспериментов, наблюдения, изучения природных явлений.

Концепция «Среда как «третий педагог»»

Возможности практического применения:

Взаимодействие с детьми:

- Поддержка инициативы: Педагог наблюдает за детьми, поддерживает их идеи, задает наводящие вопросы, но не навязывает свои решения.
- Фасилитация: Педагог помогает детям осмыслить свой опыт, найти ресурсы в среде для решения возникших задач.

Оценка развития ребенка:

- ► **Наблюдение:** Анализ того, как ребенок взаимодействует со средой, какие материалы выбирает, как решает задачи, как проявляет самостоятельность и креативность.
- **Портфолио:** Фиксация результатов деятельности ребенка, отражающая его прогресс и творческий путь.

Содержательность:

- Среда должна быть насыщена разнообразными материалами и оборудованием, соответствующими возрастным особенностям детей и содержанием образовательных программ.
- ▶ Предметы должны быть доступны и понятны детям, стимулировать их к исследованию, экспериментированию, творческой деятельности.
- Должны присутствовать как традиционные, так и нетрадиционные материалы, стимулирующие развитие познавательных, творческих и двигательных способностей.

Трансформируемость:

- **С**реда должна **предоставлять возможность для изменений** в зависимости от образовательных ситуаций, интересов детей, проводимых проектов.
- ▶ Должна существовать **свобода перемещения детей, возможность изменять игровое пространство**, использовать различные элементы среды для создания новых игровых ситуаций.
- Это позволяет детям проявлять **инициативу**, **самостоятельность и креативность**, адаптируя пространство под свои нужды.

Полифункциональность:

- ▶ Предметы и материалы должны быть использованы разнообразно, не имея единственно заданного, фиксированного применения.
- Например, строительные блоки могут служить для создания зданий, а также для изучения геометрических форм, для игр на сортировку, для создания треков и т.д.
- ▶ Это способствует развитию гибкости мышления, умения находить нестандартные решения и более эффективному использованию ресурсов.

Вариативность:

- ▶ РППС должна **предоставлять детям возможность выбора** материалов, видов деятельности, участников взаимодействия.
- Должны быть предусмотрены различные варианты организации образовательного пространства, включая уголки для уединения, зоны для индивидуальной и групповой работы, пространство для движения.
- Это позволяет учитывать индивидуальные особенности и предпочтения каждого ребенка.

Доступность:

- ▶ Все элементы среды должны быть легко доступны для детей всех возрастов и уровней развития.
- Оборудование, игрушки, материалы должны располагаться на уровне, удобном для ребенка, чтобы он мог самостоятельно брать их, использовать и возвращать на место.
- **>** Это способствует развитию **самостоятельности и ответственности.**

Безопасность:

- ▶ Все материалы и оборудование должны соответствовать требованиям безопасности, быть гигиеничными, экологичными, устойчивыми, без острых углов и мелких деталей, которые могут быть проглочены.
- Пространство должно быть организовано таким образом, чтобы предотвратить травматизм.

Дополнительные аспекты, подразумеваемые ФГОС ДО:

- Индивидуализация: Среда должна учитывать индивидуальные потребности каждого ребенка, предоставляя возможности для развития его сильных сторон и поддержки в преодолении трудностей.
- Развитие разных образовательных областей: РППС должна создавать условия для развития по всем образовательным областям, определенным ФГОС ДО (социально-коммуникативное, познавательное, речевое, художественно-эстетическое, физическое развитие).
- Интеграция: Среда должна способствовать интеграции различных видов детской деятельности и образовательных областей.
- ▶ Партнерство с семьей: Среда может быть открыта для участия родителей, предоставляя им возможность взаимодействовать с детьми в условиях ДОУ.

Центр конструирования и STEAM-лаборатория, несмотря на разный акцент, имеют много общего и во многом дополняют друг друга. Оба эти пространства направлены на развитие ключевых компетенций современного ребенка, в частности, инженерного мышления, креативности, навыков решения проблем и командной работы.

Акцент на практическую деятельность:

- Общее: И в центре конструирования, и в STEAM-лаборатории основной упор делается на деятельность ребенка. Дети не просто слушают или смотрят, а активно что-то создают, строят, изобретают, тестируют.
- Почему это важно: Практический опыт является фундаментом для понимания и усвоения новых знаний, формирования навыков.

Развитие инженерного мышления и навыков:

- Общее: Оба пространства стимулируют развитие представлений о причинно-следственных связях, логике, последовательности действий, работе с материалами и инструментами. Дети учатся планировать, воплощать идеи, анализировать результаты.
- **Центр конструирования:** Фокусируется на создании физических объектов, структур, моделей (зданий, машин, механизмов).
- **STEAM-лаборатория:** Расширяет этот аспект, включая **науку, технологии, инженерию и математику** в едином контексте, позволяя создавать более сложные, часто интерактивные, модели, интегрируя разные дисциплины.

Стимулирование креативности и воображения:

- Общее: Оба пространства предоставляют свободу для экспериментов и поиска нестандартных решений. Разнообразие материалов и отсутствие жестких ограничений позволяют детям воплощать самые смелые идеи.
- ▶ Почему это важно: Креативность основа инноваций и способности находить новые подходы к решению задач.

Развитие навыков решения проблем (Problem Solving):

- Общее: В обоих пространствах дети сталкиваются с реальными задачами и вызовами, которые требуют поиска решений. Это может быть задача построить самую высокую башню, создать механизм, который поднимает груз, или разработать простую электрическую цепь.
- Почему это важно: Умение анализировать проблему, генерировать идеи, тестировать их и доводить до результата критически важный навык.

Использование разнообразных материалов и инструментов:

▶ Общее: Оба пространства предполагают наличие богатого арсенала материалов - от традиционных (дерево, картон, пластик) до современных (электронные компоненты, датчики, робототехнические наборы, программируемые платформы). Также используются различные инструменты, как традиционные (безопасные молотки, отвертки), так и специализированные (3D-принтеры - под присмотром).

Командная работа и сотрудничество:

- Общее: Часто работа в этих пространствах носит коллективный характер. Дети учатся договариваться, распределять роли, слушать друг друга, совместно преодолевать трудности и радоваться общим успехам.
- Почему это важно: Современный мир требует умения эффективно работать в команде.

Интеграция дисциплин:

▶ Общее: Оба подхода способствуют интеграции знаний из разных областей. Конструирование может включать элементы математики (геометрия, измерения), физики (принципы механики, баланса), а STEAM-лаборатория явно их объединяет (Science, Technology, Engineering, Arts, Mathematics).

Развитие познавательного интереса:

• Общее: Игровой и исследовательский характер деятельности в обоих пространствах пробуждает у детей интерес к изучению окружающего мира, к тому, как все устроено, и как можно что-то улучшить или создать новое.

Центр конструирования

 более сфокусирован на создании физических структур и механизмов с использованием преимущественно строительных материалов.

STEAM-лаборатория

 более широка по своему охвату, интегрируя науку, технологии, искусство, математику и инженерию. Здесь могут присутствовать элементы программирования, электроники, робототехники, цифрового дизайна, что делает процесс создания более комплексным и интерактивным.

Центр конструирования

▶ Преимущественно использует строительные блоки (деревянные, пластиковые, магнитные), конструкторы (LEGO, металлические, блочные), природные материалы, иногда элементы простых механизмов (шестеренки, рычаги).

STEAM-лаборатория

■ Помимо материалов для конструирования, может включать технологические компоненты, программируемые игрушки, робототехнические наборы, планшеты с ПО для программирования и моделирования, 3D-принтеры, материалы для химических и физических экспериментов.

Центр конструирования

 Часто направлен на создание статичных или механически подвижных объектов с относительно простыми принципами действия. Цель освоить принципы строительства, устойчивости, баланса.

STEAM-лаборатория

Позволяет решать более сложные, комплексные задачи, требующие интеграции знаний из разных областей. Проекты могут включать создание интерактивных систем, программируемых устройств, моделей, которые реагируют на внешние воздействия, или виртуальных объектов.

Центр конструирования

 Может иметь минимальное или отсутствующее цифровое измерение.

STEAM-лаборатория

 Цифровые технологии являются неотъемлемой частью.
 Программирование, моделирование, использование электронных компонентов - это ключевые элементы.

Центр конструирования

 Искусство может проявляться в эстетике создаваемых объектов, но не является отдельным явным компонентом.

STEAM-лаборатория

 Искусство (Arts) сознательно интегрируется, делая акцент на дизайне, визуализации, креативном представлении идей, что придает проектам большую выразительность и привлекательность.

1) По типу материала:

Природные материалы:

Сыпучие: Песок, крупы, соль, камешки, ракушки, шишки, желуди, каштаны, палочки.

Растительные: Листья, цветы, мох, кора деревьев, ветки.

Минеральные: Камни разной формы и размера, мелкие минералы.

Назначение: Стимулируют тактильные ощущения, знакомят с природным миром, используются для декорирования, создания мини-ландшафтов, построек.

Бросовый материал (вторичные материалы):

Картонные коробки: Различных размеров, от обувных до больших упаковочных. **Пластиковые контейнеры:** Различные емкости, бутылки, крышки.

Текстильные материалы: Лоскуты **ткани,** нитки, пуговицы, ленты.

Металлические элементы: Фольга, проволока (безопасная), крышки от банок. Другое: Рулончики от туалетной бумаги и бумажных полотенец, пластиковые стаканчики, трубочки для коктейля. Назначение: Развивают фантазию, учат видеть потенциал в обыденных предметах, способствуют творческому подходу к созданию поделок и построек.

1) По типу материала:

Строительные материалы:

Деревянные кубики и бруски: Классический конструктор, разные размеры и формы. Пластиковые конструкторы: LEGO, магнитные конструкторы, блочные конструкторы. **Металлические конструкторы:** Наборы с болтами, гайками, пластинами, колесами. Гипсовые или керамические блоки: Для более серьезных построек (под присмотром). Картонные модули: Большие картонные детали для строительства домиков, крепостей. Назначение: Основные элементы для построения зданий, сооружений, техники, развития пространственного мышления, понимания основ строительства и механики.

Гибкие и соединительные материалы:

Клей, скотч, изолента.

Веревки, нитки, шнурки.

Резинки, пружинки.

Пластилин, глина, тесто для лепки.

Назначение: Помогают соединять элементы, создавать подвижные конструкции, добавлять детали, декорировать.

2) По функциональному назначению (как они используются в деятельности):

Для создания конструкций (строительные):

- **Б**локи, кубики, конструкторы, коробки, модули.
- Цель: Возведение зданий, сооружений, техники, моделей.

Для соединения и крепления:

- Клей, скотч, веревки, пластилин, пуговицы (как элементы для соединения).
- **У** *Цель*: Фиксация частей, создание подвижных соединений.

Для декорирования и детализации:

- ▶ Природные материалы, бросовый материал (крышки, пуговицы, лоскуты), пластилин, краски, фломастеры.
- **Цель:** Придание постройкам законченного вида, добавление мелких деталей, создание уникального дизайна.

Для моделирования и создания форм:

- Пластилин, глина, тесто для лепки, песок.
- **У** *Цель*: Формирование отдельных элементов, создание объемных фигур.

Для создания "мягкой" среды:

- Тканевые лоскуты, подушки, набивные элементы.
- ▶ Цель: Создание уюта, подушек для построек, декоративных элементов.

- 3) По степени обработки:
- **Натуральные, необработанные:** Камни, ракушки, шишки.
- **Частично обработанные:** Палочки, веточки, отшлифованные камешки.
- Полностью обработанные/готовые: Строительные блоки, детали конструкторов, пластиковые бутылки, картонные коробки.
- 4) По доступности и безопасности:
- **Свободно доступные:** Игрушки и материалы, которые дети могут брать и использовать самостоятельно в любое время.
- ► **Требующие участия взрослого:** Например, инструменты (ножницы, клей-пистолет под строгим контролем), электрические компоненты (если используются).

Требования к материалам центра конструирования

- **Разнообразие:** Наличие разнообразных материалов стимулирует большее количество идей и способов их воплощения.
- **Доступность:** Материалы должны быть удобно расположены и доступны детям.
- **Систематизация:** Желательно иметь специальные контейнеры, полки для хранения материалов, чтобы дети могли учиться порядку.
- **Обновление:** Периодическое пополнение центра новыми материалами поддерживает интерес детей.
- **Соблюдение санитарно-гигиенических норм:** Материалы должны быть безопасны, легко моющимися, нетоксичными.

Организация пространства в центре конструирования: Правила «умного» хранения и доступа

Систематизация и зонирование:

Разделение по типам материалов: Храните материалы, объединенные по типу (например, все строительные блоки вместе, все природные материалы в отдельной зоне, бросовый материал - в другом контейнере).

Зонирование по видам деятельности: Можно выделить зоны для:

- **Строительства:** Место для крупногабаритных построек (свободный пол, большие столы).
- Мелкого конструирования: Небольшие столы или поверхности для работы с мелкими деталями.
- **Природными материалами:** Уголок с песком, водой, камнями, шишками.
- **Бросовым материалом:** Зона для творчества из подручных средств.

Логика размещения: Наиболее часто используемые материалы должны быть расположены в наиболее доступных местах. Менее востребованные или требующие помощи взрослого - чуть дальше.

Организация пространства в центре конструирования: Правила «умного» хранения и доступа

«Умное» хранение:

Прозрачные контейнеры: Используйте прозрачные коробки, ящики, контейнеры. Это позволяет детям видеть содержимое, не открывая каждый ящик.

Маркировка:

- **Визуальная маркировка:** Фотографии содержимого на ящиках, картинки, пиктограммы. Это особенно важно для детей, которые еще не умеют читать.
- **Цветовая маркировка:** Можно использовать цветные наклейки или сами контейнеры разного цвета для разных категорий материалов.
- **Надписи:** Для детей постарше можно добавить надписи.

Уровень доступа:

- **Для малышей:** Самые простые и безопасные материалы (крупные кубики, мягкие блоки) должны быть на нижних полках, доступные без усилий.
- **Для детей постарше:** Более сложные конструкторы, мелкие детали могут располагаться чуть выше, но все равно в пределах их досягаемости.
- **Материалы, требующие присмотра:** Храните отдельно и выдавайте только под руководством педагога.

Вертикальное хранение: Используйте стеллажи, полки, подвесные системы, чтобы максимально задействовать вертикальное пространство и освободить пол.

Мобильные решения: Тележки, тумбы на колесиках позволяют легко перемещать материалы по группе, адаптируя пространство под конкретную задачу или проект.

«Капсулы» для проектов: Можно создавать наборы материалов для конкретных проектов или тематических недель, которые хранятся вместе.

Организация пространства в центре конструирования: Правила «умного» хранения и доступа

Правила доступа:

- Самостоятельность: Дети должны иметь свободный доступ к большинству материалов.
 Это развивает их самостоятельность, инициативность и умение делать выбор.
- Правило «одного ящика за раз»: Чтобы избежать беспорядка, можно установить правило: брать один ящик с материалами, работать с ним, а затем убирать его на место, прежде чем брать следующий.
- ▶ Правило «ответственного пользователя»: Дети должны понимать, что они сами отвечают за порядок в центре. После окончания работы все материалы возвращаются на свои места.
- Совместное наведение порядка: В конце занятия или дня проводите совместное с детьми наведение порядка. Это не только воспитывает ответственность, но и превращает уборку в часть игры или совместной деятельности.
- «Бережное обращение»: Дети должны быть ознакомлены с правилами бережного отношения к материалам и инструментам.

Организация пространства в центре конструирования: Правила «умного» хранения и доступа

Пространство для деятельности:

- **Столы:** Различные по размеру и высоте столы для индивидуальной работы, для парной, для работы с крупными деталями.
- Свободный пол: Просторное место для строительства масштабных сооружений, где дети могут свободно перемещаться вокруг своих построек.
- Стеллажи и полки: Открытые полки для удобного доступа к материалам, закрытые шкафы для хранения.
- **Стены:** Пространство на стенах можно использовать для демонстрации работ детей, для размещения подсказок, схем, идей.
- «Тихая» зона: Небольшой уголок, где можно спокойно посидеть, подумать над проектом, посмотреть книги по конструированию.

Организация пространства в центре конструирования: Правила «умного» хранения и доступа

Примеры организации:

Крупные строительные блоки (деревянные, пластиковые, картонные): Хранятся на нижних полках или в больших контейнерах на полу, в зоне, где есть достаточно свободного пространства.

Мелкие конструкторы (LEGO, магнитные): В прозрачных пластиковых контейнерах с картинками на фасаде, расставленных на стеллаже.

Природные материалы: В отдельных коробках или корзинах, маркированных изображениями (шишка, камень, ракушка).

Бросовый материал: В больших пластиковых контейнерах или картонных коробках, возможно, разделенных по типам (коробки, крышки, трубочки).

Пластилин, глина: В герметичных контейнерах, чтобы не высыхали.

Роль педагога: от хранителя порядка к провокатору идей

Задавайте открытые вопросы: Вопросы, на которые нельзя ответить "да" или "нет".

Слушайте внимательно: Учитывайте идеи и предложения детей, даже если они кажутся нелогичными.

Создавайте безопасную среду: Поощряйте ошибки как часть процесса обучения.

Будьте примером: Покажите свою собственную креативность и готовность к экспериментам.

Не спешите с ответами: Дайте детям время на обдумывание и поиск решений.

«А что, если...» (Игровое варьирование):

Суть: Педагог предлагает изменить условия или параметры уже имеющейся постройки или новой задачи.

- «Ребята, мы построили прекрасный дом. А что, если этот дом должен выдержать сильный ветер? Что нужно добавить или изменить, чтобы он стал крепче?»
- «Мы сделали машину. А что, если этой машине нужно будет ездить не только по ровной дороге, но и по песку?»
- «Мы построили башню. А что, если ее нужно сделать выше, но у нас больше нет таких кубиков? Как можно использовать другие материалы?»
- «Мы сделали мост. А что, если по нему должны будут проезжать не только машинки, но и большие грузовики?»

«Необычное применение» (Функциональная инверсия):

Суть: Предложить детям использовать привычные материалы или объекты не по их прямому назначению.

- «Давайте построим дом, но вместо обычных стен будем использовать только трубочки для коктейля!»
- «Из этих шишек и ракушек можно построить не просто замок, а что-то совершенно новое. Что это может быть?»
- «У нас есть много пуговиц. Как их можно использовать не для одежды, а для строительства чего-то интересного?»
- «Эта веревка может быть не просто шнуром. Как ее можно использовать как часть нашей постройки? Может, это будет канат или антенна?»

«Секретный ингредиент» или «Загадочный предмет»:

Суть: Ввести в центр конструирования неожиданный предмет или материал, который дети должны интегрировать в свои постройки.

- «Сегодня к нам в гости пришел вот такой необычный предмет (например, пружинка, старая зубная щетка, яркая лента). Как вы думаете, где он может пригодиться в вашей постройке?»
- «В нашем наборе появился новый материал глина. Попробуйте построить чтото, где глина будет играть особенную роль.»
- «У нас есть тайный мешочек с материалами. Каждый может достать один предмет и придумать, как его использовать в своей постройке.»

«Проблема из сказки/истории/ситуации»:

Суть: Создать контекст, связанный с сюжетом, который требует решения инженерной задачи.

- «Колобок убегает от лисы. Постройте ему самый быстрый и безопасный транспорт, чтобы он мог уехать далеко!»
- «Маленькому ежику нужно перебраться через ручей, чтобы добраться до яблок. Постройте ему мост или лодку.»
- «Нам нужно построить надежное укрытие для животных, потому что скоро начнется дождь.»
- «Представьте, что вы архитекторы будущего. Какое здание вы бы построили на Марсе?»

«Перевертыши» (Изменение перспективы):

Суть: Предложить детям взглянуть на объект или задачу с необычной точки зрения.

- «Давайте посмотрим на этот кубик не как на кубик, а как на окошко. Что можно построить, если мы будем видеть мир через эти «окошки»?»
- «Представьте, что вы муравьи. Как выглядит наш центр конструирования с высоты вашего роста? Какие постройки вам нужны?»
- «Постройте дом не для людей, а для птиц или для жуков.»

«Что отсутствует?» или «Что нужно добавить?»:

Суть: Стимулировать анализ и поиск недостающих элементов.

- «Мы построили дом. Что в нем не хватает, чтобы в нем было уютно жить?
 Может быть, мебель? Или сад?»
- «Наша машина едет, но что-то еще нужно, чтобы она была полностью готова к путешествию? Может, багажник или фары?»
- «Мы сделали замок. А где в нем хранились запасы? Может, нужно построить еще и склад?»

«Имитация и адаптация»:

Суть: Предложить детям построить что-то, основываясь на образе или идее, а затем адаптировать ее.

- «Давайте посмотрим на фотографию этого необычного дома. Попробуйте построить что-то похожее, но добавьте свою собственную идею!»
- «Посмотрите, как устроен этот механизм. Попробуйте создать свой собственный, но с другими функциями.»

«От противного» (Создание «анти-объекта»):

Суть: Задать задачу построить что-то, что должно быть наоборот, или выполнять противоположную функцию.

- «Давайте построим не крепкий дом, а дом, который легко разрушается. Для чего это может пригодиться?» (например, для сноса или для изучения материалов).
- «Постройте не быструю машину, а очень-очень медленную. Для каких целей она нужна?»